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The survey [l] of results obtained in the study of the conditions for the existence of motion with precession 

in the dynamics of systems of rigid bodies indicates that in the classical problem concerned with the motion 

of a rigid body precession of general form occurs [2], the conditions for the existence of which have not been 

studied in the generalized problem. The present paper fills this gap. A new solution of the generalized 

problem characterized by the presence of precession of general form is constructed. The case of 

integrability, which was presented in [2] for the classical problem, is a special case of this solution. 

1. FORMULATION OF THE PROBLEM 

CONSIDER the equations of motion of a rigid body with a fixed point in the generalized problem 

Au’= (Ao+b) Xo+oXBv+sXv+vXCit 

v.=vXw 
(1.1) 

These equations have the first integrals 

Ao~0-2(s~v)+Cv~v=%E, v.v=l 

2(Ao+‘)*) .v-&.v=2k 
(1.2) 

Let i, j, k be the unit vectors of a system of coordinates attached to the body. Then, using the notation 
a = a,i + a2j + a3k = (aI, u2, u3) for any vector, we have the angular velocity vector w = (01,02, w3) of the 
body, the unit vector of the vertical axis v = (IQ, ~2, vj), the gyrostatic moment A = (Al, AZ, h3), the 
generalized centre of mass vector s = (sl, s2, s3), and Aw = (x1, x2, x3), where 

x,=A,,o,+A,z0z+Ai30s, ~=A,zo~+Azzoz+Az~os (1.3) 

ZQ=A~~W,+AZ~~~+AJ~~~ 

are the components of the angular momentum, Bv and Cv being vectors of the following form: 

Bv= (B,,vr+Bi2v~+&svs, B,2vl+B22V*+B*3VJ, B,SV,+B2Jv2+&3V3) 

Cv=(c,,VI+C,ZVZ+C,S1IJ, c,zv,+czzvz+G3vs, Gsvr+Gsv2+G3vs) (1.4) 

Thus the matrices A, B and C in (1.1) and (1.2) are symmetrical and, in addition, A is positive definite. 
We say that the body undergoes a motion with precession about the vertical axis if the angle between a and v, 

a being a unit vector fixed inside the body (a’ = 0), remains constant for the whole duration of the motion. 
Such a motion is characterized by the obvious invariant relation 

a .v=a#_l. no=cos en (1.5) 
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where 80 is the angle between a and v. Differentiating (1.5), we get a. (v X o) = 0 by virtue of the second 
equation in (1.1). It follows that o can be represented in the form 

o=cp’a+g’v (1.6) 

We will not consider the case when a and v are collinear, since it leads to uniform motion of the body. On 
substituting (1.6) into the second equation in (1. l), we have 

v’=rp’(vXa) (1.7) 

In (1.6) and (1.7) ‘9’ and +’ are functions of time. A motion for which neither of these functions is constant is 
called a precession of general form [l]. It is this case that we shall consider in the present paper. We attach a 
moving system of coordinates to the body in such a way that a = (0, 0,l). Then one can ensure that relations 
(l.S), (1.7) and v .v = 1 are satisfied by setting 

v,=n0 sin’cp, vz=u~’ coscp, v3=ao, ao’=sin Cl,, (1.8) 

Taking (1.3) and (1.4) into account, we substitute w from (1.6) into the first equation in (1.1) and integrals 
(1.2): 

cp”Aa+*“Av+cp’~,‘[Tr(A) (vXa) -%(AvXa) ]- 

-cp”(AaXa) --t/~*~(AvXv) -cp’(aXBv+hXa) -~‘(vXZ?v+~Xv) =sXv+vXCv 

(1.9) 

We project both sides of the first equality in (1.9) onto a, v, and v X a: 

cp”(Aa.a)+g”(Aa.v)=$“[a.(AvXv)]+ 

+g’[a.(~Xv)+a~(vXBv)]+a~(sXv)+a.(vXCv) 

cp”(Aa.v)+$“(Av.v)=2rp’$‘[v.(AvXa)]+ 

+rp”[v. (AaXa) ]+cp’[v. (LXa) +v. (ax&) ] 

cp”[Aa(vXa) ]+g”[Av. (Wa) ]+rp’$‘[Tr(A)~‘“- 

-2(Av.v) +2a,,(Aa.v) ]-rp”[ (Aa.v) -a,(Aa.a) ]- 

-g”[a,,(Av.v) -(Aa.v)]+cp’[ao(La) -(Id)- 

-n,(Ba.v)+(Bv.v)]+g.[(l.a)-u,(l.v)-(Bv.o)-t 

+~~(Bv.v)]+(a.s)-ao(s.v)+ao(Cv~v)-(Cv,a)=O 

(1.10) 

The gist of the method for investigating motion with precession about the vertical axis consists of the 
following [l]. From the first two equations in (1.10) we find the second derivatives cp” and $“, and we 
substitute them into the third equation of this system. As a result, we obtain an equation containing the first 
derivatives cp’ and $‘, On the basis of integrals (1.9), we can eliminate cp’ and +’ in the latter equation. On 
substituting expressions (1.8), the equation obtained in this way yields an equation of the form F(cp, hi, Si, A,, 
Bkl, CT,,,,,) = 0. The requirement that this equation should be an identity in CP leads to conditions for the 
parameters, under which the body will undergo a motion with precession. It can be shown that the 
above-mentioned transformations have no singularities. 

In the general case the problem of precession for Eqs (1.1) h as not been solved and only partial results are 
known [l]. 

In the present paper we state the problem of the conditions for the existence of precession of general form 
with the following structure: 

cp”=b,+bz sincp. $‘=I& (1.11) 

i.e. $‘cp’ = b3, where b3 is a constant. Precession of general form in the classical problem, which corresponds to 
the case of integrability found earlier in [2], has this property. In [l] the uniqueness of this precession was 
shown in the case when a belongs to the principal plane of the ellipsoid of inertia. 
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2. CONDITIONS FOR THE EXISTENCE OF A SOLUTION 

Substituting (1.11) into the integrals from (1.9), we get 

[f, (cp) (bt+h sin (P) +W~(cp) F-~~((P) (h+h sin cp) =O 
(2.1) 

hz(cp)(b~+b2sincp)-A33(b,+bzsin(p)2-2b,f,(cp)(~l+b2sincp)-b,2fz(cp)=O 

Here 

f, (fp) = (Aa.v) =a1 sin fp+a2 cos cp+ar, 

f2(cp) = (Av.v) =ci sin 2rp+c2 cos 2cp+c~ sin (p+c~ cos cp+c5 

g2(~)=~/2(Bv~v)-(I~v)+k=b~osin2cp+b2’cos~+bs’sincp+b,‘cosrp* b$‘, 

h2(cp) -22E+2(s+) - (Cv.v) =di sin 2cp+d2 cos tcp+da sin q+d‘ cos q*ds 

a1=Amao’. az=Azsao’. 43 = hao, c,=A12aO” 
, 

c~=‘/~(A22--A,,)ao’~r cJ=2A,~aoa~‘, c,=2At,aoao’ 

c5=‘ltao”(At~+Atz) +A3aaoz 

bt l =*/2B12a0”, b2’=‘/~ao”(Bt~-B~~), bg’=ao’(BIJao-&) 

b,‘=ao’(Bzsa~-12), b~‘=1/~ao’~(B~~+B~~)+i~2B~~aoZ-h~ao+k 

dt= --Ci2ao “, d2=*/2(C,1-C22)ar”. da=2ao’ (81 -C~J~O) 

d~=fao’(+G&, d~=2E+2s~ao-1/2ao’z(C,1+C22) -a,2CSs 

Equations (1.10) can also be written in a similar form. It is convenient to analyse the resulting relations starting 
from Eqs (2.1). As a result of the investigation carried out, the following conditions for the parameters are 
obtained: 

(2.2) 

Thus, under conditions (2.2), Eqs (1.1) have the solution 

o=cp’a+g’v, v= (40’ sin’rp, 40’ cos cp, aO) 

rp’= (b1+b2 sin cp)‘“, $‘=b&’ 
(2.3) 

Let us mention the basic properties of the precession (2.3). Using (2.2) and the results obtained earlier in [l], 
we conclude that, as in the classical problem, in the given solution (2.3) the gyrostat is a Hess gyroscope (the 
centre of mass lies in the principal plane on the line perpendicular to the circular cross-section of the gyration 
ellipsoid), the vectors s and a lie in the principal plane of the ellipsoid of inertia, and 0s depends only on the 
moments of inertia of the gyrostat, If the case Bii = B13 = Bx3 = 0 is considered, then hi = A2 = A3 = 0. Since 
C,i = &*A, (where E’ is a parameter) for the problem of the motion of a rigid body in a central Newtonian field 
of force, it follows by (2.2) that A 11 = Az2, A13 = 0, and (2.3) is not a solution. 

Under the given conditions (2.2), the axial moments of inertia and the components Cii and C,, of C and B,3 
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of B, as well as b3 can be taken as the free parameters. That the solution (2.3) is real valued follows from the 
results obtained earlier in [l]. The dependence of cp on time can then be found by inverting an elliptic integral. 

The method of investigation used in this paper indicates that the precession (2.3) is unique under the 
conditions (2.2). For C = 0, B = 0 and A = 0, we obtain a precession of general form in the classical problem of 
the motion of a rigid body corresponding to a solution [2], which, despite the Hess conditions for the 
distribution of the mass of the body, does not occur as a special case in the Hess solution. 
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It is shown that, when the Stokes equations are used, a drop which is falling through a viscous fluid can only 

maintain a strictly spherical shape when there are specific distributions of the surface tension. Deviations 

from these distributions will cause some deformation of the drop. These results are obtained using a more 

general solution of the Stokes equations compared with the solutions which were considered earlier [l]. 

THE MOTION of a spherical drop in a viscous fluid has been studied both theoretically and experimentally. It has 
been pointed out [2] that agreement between the experimental and theoretical results can be attained if account 
is taken of the effect of surfactants and the changes on the surface of a drop associated with them. Moreover, 
the surface tension distribution on the drop may manifest itself in the shape of its surface. 

The deformation of a drop which falls through a viscous fluid has been treated in the Oseen approximation, 
taking into account inertial effects, by the method of matched asymptotic expansions [l, 31. It was concluded 
[l] that deformations of the surface cannot occur and the drop will remain spherical within the framework of 
the inertia-less Stokes equations when the surface tension on the surface of the drop is constant and there is no 
change in the rate of flow around the spherical drop. 

Let us consider the flow around a drop of radius R by another fluid with a velocity U at a large distance from 
the drop. This flow relative to the drop arises as a result of its falling through the fluid under the action of 
gravitational and Archimedean forces. The surface tension u varies along the surface of the drop u(8). There 
are various reasons for this change in the surface tension: the existence of surfactants, a non-uniform 
temperature field, etc. 
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